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Abstract

In this paper, a new distribution is proposed called beta exponentiated

inverse Rayleigh (BEIR). Some of its statistical properties such as

quantile function, order statistics, moments, inverse moments, moment

generating function and Renyi entropy are derived and discussed.

Maximum likelihood and Bayesian methods are used to estimate the

model parameters. Monte-Carlo simulation study is carried out to

examine the bias and mean square error of maximum likelihood and

Bayesian estimators. Finally, real data sets are used to illustrate the

importance of the new distribution.
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1. Introduction 

Inverse Rayleigh distribution was introduced by Trayer [22] to model 

reliability and survival data sets. Voda [24] discussed inverse Rayleigh (IR) 

distribution, its properties and ML estimator of the parameter. Gharraph [7] 

provided a closed-form expression for the mean, harmonic mean, geometric 

mean, mode, and the median of this distribution. The beta inverse Rayleigh 

distribution (BIR) is a special case of the beta Frechet (BF) distribution, 

which was introduced by Nadarajah and Gupta [15]. Hassan and Parviz [25] 

estimated the parameters of the generalized exponential distribution using 

grouped data using classical and Bayesian estimation methods. Leao et al. 

[13] studied beta inverse Rayleigh distribution and Ahmad and Ahmed [1] 

introduced a generalization of the inverse Rayleigh distribution. Modified 

inverse Rayleigh distribution has been studied by Khan [20]. Rehman and 

Sajjad [19] studied exponentiated inverse Rayleigh distribution, and Khan 

and King [10] studied transmuted modified inverse Rayleigh distribution. Ul 

Haq [23] introduced transmuted exponentiated inverse Rayleigh distribution. 

Some new distributions have been introduced using a class of beta 

generalized distributions. For example, beta normal distribution (BN) was 

introduced by Eugene et al. [3]. General expressions for the moments of the 

BN distribution were derived by Gupta and Nadarajah [5]. Beta Weibull 

distribution was introduced by Famoye et al. [4]. Beta exponential 

distribution and its various properties were discussed by Nadarajah and Kotz 

[16]. Beta generalized exponential distribution was proposed by Hassan        

and Parviz [25]. Beta Weibull-geometric distribution was introduced by 

Bidram et al. [2]. Beta Kumaraswamy distribution was introduced by 

Handique et al. [8]. Beta exponential Pareto distribution, its various 

properties and estimation of the parameters were derived by Rashwan and 

Kamel [18]. 

The cumulative distribution function (cdf) of the exponentiated inverse 

Rayleigh (EIR) distribution is defined by 
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The EIR density function can be written as 

  ,0,0,0,1
2

1

3

2
22

























 





 

xee
x

xg xx  (2) 

where  is the scale parameter and  is the shape parameter. 

Eugene et al. [3] defined a class of beta generalized distributions from an 

arbitrary baseline,  ,xG  by 
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where 0a  and 0b  are two additional shape parameters whose role      

is to introduce skewness and to vary tail weight and   baB ,  

   
1

0
11 1 dwww ba  is the beta function. The cdf  xG  could be quite 

arbitrary and F is named to be the beta G distribution. 

The probability density function corresponding to equation (3) can be 

written in the following form: 

           ,1
,

1 11 xgxGxG
baB

xf ba    (4) 

where    
dx

xdG
xg   is the pdf of the parent distribution. 

In this article, we proposed a new distribution called the beta 

exponentiated inverse Rayleigh distribution (BEIRD) that includes      

inverse Rayleigh, beta inverse Rayleigh and exponentiated inverse Rayleigh 

distributions.  
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This paper is organized as follows: BEIRD is presented in Section 2.            

In Section 3, some statistical properties of the BEIR distribution are derived. 

In Section 4, parameters are estimated using the maximum likelihood and 

Bayesian methods. Moreover, a simulation study is performed to measure 

the efficiency of the two methods. In Section 5, an application to real data 

shows that the BEIR model fits better than six other lifetime models. Finally, 

the paper is concluded in Section 6. 

2. The Beta Exponentiated Inverse Rayleigh Distribution 

In this section, the beta exponentiated inverse Rayleigh distribution will 

be defined by taking 

     








 

















  

2

11

0
11 ,0,0,,,,1

,
1 xe ba xbadwww

baB
xF  (5) 

and the corresponding pdf for  xF  takes the form: 

    .111
,

2

11
32

222







 







 





 





















































a

x

b

xx eee
baB
x

xf  (6) 

Note that the BEIRD involves some well-known distributions as special 

cases: 

- when ,1 ba  the BEIR distribution in equation (6) reduces to the 

EIR distribution with parameters  and , 

- when ,1 ba  the BEIR distribution becomes the inverse 

Rayleigh distribution with parameter , 

- when ,1  the BEIR distribution will be beta inverse Rayleigh 

distribution with parameters a,  and b. 

Here, simple expansions for the cdf and pdf of the BEIRD will be 

derived. It depends on whether the parameter b or a is a real non-integer or 
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an integer. We use the following generalized binomial expansion: 
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If b is a real non-integer and    is the gamma function, applying 

equation (7) in equation (5), the cdf of BEIRD can be written as 
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By using equation (7) in equation (6), if a is a real non-integer, then the 

pdf of BEIRD can be written as: 
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For real integers a and b, the cdf and pdf of BEIRD are expressed as 

follows: 
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and 
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If  is an integer, then the sum in equation (10) simply stops at  ,1b  

and in equation (11) stops at   1 ib  and  ,1a  respectively. 

The reliability function  ,xS  hazard rate function  ,xh  reversed hazard 

rate function  ,xr  and the cumulative hazard function  xH  of BEIRD are, 

respectively, given by: 
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If a random variable x has BEIRD with parameters ,, ba  and , then 

we write  .,,,~ baBEIRx  

3. Statistical Properties 

In this section, we introduced some of statistical properties of the 

BEIRD, specifically, quantile regression, order statistics, moments, inverse 

moments, moment generating function and Renyi entropy. 

3.1. Quantile function 

The quantile function of a random variable x distributed according to 

BEIR can be obtained by inverting equation (8) as follows: 
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By using  ,uQ  we can obtain the first quartile ,1Q  the median ,2Q  and 

the third quartile 3Q  of the BEIR distribution by replacing u with values 

0.25, 0.50 and 0.75, respectively. 

One of the original skewness measures indicated in Bowley’s skewness 

(sk), (Kenny and Keeping [12]), is defined as 
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and the Moor’s kurtosis (ku), (Moors [14]), which is based on octiles can be 

defined as 
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where  Q  represents the quantile function. The measures sk and ku are 

less sensitive to outlier values and they exist even for distributions without 

moments. 

3.2. Order statistics 

In this subsection, we consider order statistics which plays an important 

role in many applications such as quality control and reliability. The density 

function of the ith order statistics niX :  say  xf ni:  for ni ,,2,1   in a 

random sample of size n from the BEIRD is given by: 
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Substituting equation (8) in the above equation, we obtain 
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Use the expansion  
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,2,1m ” is the pdf of the ith order statistics. 

By substituting in equation (12) using  xf  in equation (9), the ith order 

statistics for a real non-integer 0b  is given by: 

     ,,,;: bmkiaxfxf ni  



Nasr I. Rashwan et al. 94 

        

     





 












 




in

k m ki

kim
kik

baBiniB

CbmkiaBb
k

in

0 0

1
1,

1

,1,

,1
 

  ,,,,;  bmkiaxf  

where 

 
 

   

    
    





































  





m

l kilm

lkim

C
lblal

lmkil

ab
m

C

1 1,

10
1

1
1,

!
1

1

!000
1

 

      
    ,

!
1

1 1,  


m

l kilm

l
C

lblal
mkil

m
ba

 

and    ,,,; bmkiaxf  is the pdf of BEIR with parameters 

   ,, bmkia  and . 

For integer ,0b  the ith order statistics is given by: 
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and    ,,,; bmkiaxf  is the pdf of BEIR with parameters 

   ,, bmkia  and . 

3.3. Moments 

The rth non-central moment of a random variable x distributed according 

to BEIRD is given by: 

         
  





 



 

0 0 0 0
,1; dxjxgwxdxxfxxE

i j IRij
rrr  

so,  

    









 





 


















0 0

1

0 3

2
2

2
i j

j

xr
ij

r dxe
x

xwxE  

 
  









 




 

0 0 0

1
32 .2

2

i j
x

j
r

ij dxexw  (13) 

Let 

  ,1
2






 

x
jt  when ,,0  tx  and ,0,0,  ttx  

    .1
2

,1 23212121 dttjdxtjx    

Using the above transformations in equation (13), we get 

         








 
0 0 0

321212 121
i j

r
ij

r tjwxE  

  ,1
2

2321 dttje t    

and then 

     








 



0 0 0

2
1

2 ,1
i j

t
rr

r
ij

r dtetjwxE  



Nasr I. Rashwan et al. 96 

so, 
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Hence, if ,0a  then  rxE  of BEIR distribution is 
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The above equation is valid only for .1r  So, the only mean of the 

BEIR distribution is obtained by putting 1r  in equation (14) as follows: 
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Equation (13) can be used to obtain moments and inverse moments when 

.rr   It is observed that the higher moments of order 2, 3 and 4 for BEIR 

distribution do not exist but the inverse moment of any order exists. 

3.4. Inverse moments 

The rth inverse moment of the BEIR distribution is obtained by: 
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The four inverse moments are obtained by putting 4,3,2,1r  in the above 

equation: 
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3.5. Moment generating function 

The moment generating function (mgf) of X of the BEIRD,  ,tM x  can 

be obtained as 

     



0

,dxxfeeEtM txtx
x  

by using Taylor’s series expansion, we get 

       












0

32
,

!3!2
1 dxxf

txtx
txtM x L  

so, 

      
 




0 0
,

!r

r

x dxxf
r

tx
tM  

and then 

   




0
.

!r

r
r

x r
t

xEtM  (15) 

Hence, the moment generating function of BEIR distribution is obtained 

by using equation (14) in (15) as: 
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In the same way, the factorial moment generating function of the BEIR 

distribution becomes: 
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and the characteristic function of BEIR distribution is given by: 

   
   

  





















 

0 0 0

1
2

,1,
!

1

2
1

i j r

r

ij
r

ritx
x r

r

jwitr
eEt  

where 1i  is the unit imaginary number. 

3.6. Renyi entropy 

The entropy of random variable x with density function  xf  is a 

measure of variation of the uncertainty, as in Song [21], Renyi entropy is 

given by: 
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4. Estimation 

In this section, the parameters of the proposed BEIRD will be estimated 

using the maximum likelihood estimation method and Bayesian estimation 

method as follows: 

4.1. Maximum likelihood estimation and its simulation 

The maximum likelihood estimation method of the unknown vector of 

parameters , where  ,,,,  ba  will be used to estimate the unknown 

parameters of the BEIRD. Let nxxx ,,, 21   be an independent random 

sample of size n from the BEIRD with parameters ,, ba  and . Then the 
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likelihood function, L, of BEIRD is given by: 
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and the logarithm likelihood function Lln  for the vector of parameters 

 Tba  ,,,  can be expressed as 
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The score vector is: 
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where the components corresponding to the parameters in  are calculated by 

differentiating equation (17) as follows: 
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where    is the digamma function which is the derivative of  ,ln   

where    is the gamma function. We can obtain the estimates of the 

unknown parameters by setting the score vector to zero and solving them 

using numerical iteration such as Newton-Raphson algorithm. 
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Now, we study the performance of the MLE with respect to sample size 

n using simulation. To conduct the simulation study, we follow the following 

steps: 

We generate 1000 samples of size 200,100,50,20n  from BEIRD       

(2, 0.5, 0.75, 1.5) and compute the MLEs for the 1000 samples, and compute 

the biases and mean-squared errors (MSEs). The results are listed in Table 1, 

where 
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1
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1
MSE

i i
 

Table 1. Average of “MLE summaries, bias and MSE” 

n Parameters Average “MLE” Bias MSE 

20 a 2.07980 0.13982 0.08317 

 b 0.48813 0.02187 0.03695 

  0.76427 0.73106 0.05837 

  1.56790 0.15036 0.09734 

50 a 2.06627 0.09247 0.08094 

 b 0.48299 0.01501 0.02913 

  0.77527 0.65116 0.04637 

  1.54977 0.11943 0.08641 

100 a 2.05368 0.08477 0.07365 

 b 0.48420 0.01080 0.02081 

  0.77760 0.40657 0.03971 

  1.51748 0.09067 0.07006 

200 a 2.06638 0.07402 0.06824 

 b 0.49017 0.00983 0.00959 

  0.75726 0.14822 0.02864 

  1.49795 0.05068 0.07332 
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From Table 1, it is noted that the magnitude of bias and MSEs always 

decrease as n grows. Thus, the MLE technique performed quite well for 

estimating the parameters. 

4.2. Bayesian estimation and its simulation 

In this subsection, Bayesian estimation of the unknown vector of 

parameters  of the BEIR is considered under the squared error loss 

function. Assuming that the unknown parameters are independent, the 

Bayesian estimation for  is obtained assuming the standard exponential 

distribution as an informative prior for each parameter, in Case 1. While 

Case 2 assumes a gamma prior for each one of the parameters, Case 3 deals 

with the non-informative prior distribution for the parameters. 

Case 1 (called C1). Suppose that the prior distribution of each element 

of the vector of parameters   ,,, ba  is a standard exponential 

distribution. Then the joint prior density function of parameters  is given 

by: 

  ,1
 eeee ba  (22) 

where ,, ba  and  are positive. 

The joint posterior density function of  can be obtained from equations 

(16) and (22) as follows: 
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Case 2 (called C2). Suppose that the prior distribution of each element 

of the vector of parameters   ,,, ba  is a gamma  1,i  distribution; 

.4,3,2,1i  Then the joint prior density function of the vector of 

parameters  is given by 

  .
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 eeebea ba  (24) 

The joint posterior density function of  can be obtained from equations 

(16) and (24) as follows: 
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Case 3 (called C3). Assume a non-informative distribution for each 

parameter. Then the joint prior density function of the vector of the 

parameters  is given by: 

  .
1111
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ba
 (26) 
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The joint posterior density function of  can be obtained from equations 

(16) and (26) as follows: 
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 (27) 

The conditional posterior distribution of ,, ba  and   cannot be 

reduced analytically to well-known distributions, and therefore, it is not 

possible to sample directly by standard methods. We use the Markov Chain 

Monte Carlo (MCMC) method named as the Metropolis Hastings sampling. 

For this algorithm, we propose the following steps: 

Step 1. Choose the MLEs ̂,ˆ,ˆ ba  and ,̂  as the starting values 

         0001 ,,, ba  of ,, ba  and . 

Step 2. Set .1i  

Step 3. Generate        .,,, iiii ba   

Step 4. Evaluate the acceptance probabilities .  

Step 5. If  ,i  accept the proposal points. 

Step 6. If  ,i  the proposal points are rejected and set .1 ii  

Step 7. Repeat Steps 3-5, for all 1000,,2,1 Ki  (N times). 
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Step 8. Obtain the Bayes estimates of ,, ba  and  with respect to the 

square error loss function as 
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where m is the burn-in period, 
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To compute the posterior summaries, the computations regarding the 

comparisons between the considered three cases (C1, C2 and C3) are 

performed assuming different sample sizes. For a given vector of parameters 

 ,,,,  ba  we generated 10,000 MCMC samples and used 2002 as 

the burn-in period to have stable posterior summaries. The resulting study is 

tabulated in Tables 2, 3 and 4. 

Table 2. Posterior summaries for the BEIR distribution for C1 
Prior n Parameters Mean Biases MSE 

C1 20 â  2.06271 0.09749 0.00971 

  b̂  0.48159 0.01845 0.00169 

  ̂  0.77721 0.06084 0.00475 

  ̂  1.55953 0.08610 0.00814 

 50 â  2.07079 0.09507 0.00936 

  b̂  0.48509 0.01494 0.00133 

  ̂  0.77311 0.05786 0.00465 

  ̂  1.54868 0.08079 0.00760 
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 100 â  2.06297 0.09183 0.00885 

  b̂  0.48448 0.01354 0.00129 

  ̂  0.75947 0.05146 0.00379 

  ̂  1.51633 0.07503 0.00680 

 200 â  2.04944 0.08298 0.00772 

  b̂  0.48664 0.01038 0.00109 

  ̂  0.75308 0.04406 0.00294 

  ̂  1.48404 0.07667 0.00674 

A program code has been designed using R statistical package to       

solve the integral of equations (23), (25) and (27), to obtain the estimates 

  ˆ,ˆ,ˆ,ˆˆ ba  of   ,,, ba  in all three previous cases. Tables 2, 3 

and 4 show the estimate of mean, bias, and mean squared error (MSE) for 

the three considered cases (C1, C2 and C3). 

Table 3. Posterior summaries for the BEIR distribution for C2 
Prior n Parameters Mean Biases MSE 

C2 20 â  2.07979 0.09801 0.00972 

  b̂  0.48811 0.01191 0.00268 

  ̂  0.77427 0.06105 0.00498 

  ̂  1.56788 0.08828 0.00855 

 50 â  2.06626 0.09245 0.00907 

  b̂  0.48299 0.01704 0.00151 

  ̂  0.76527 0.06015 0.00483 

  ̂  1.54976 0.08200 0.00764 

 100 â  2.05368 0.09079 0.00831 

  b̂  0.48421 0.01583 0.00140 

  ̂  0.75761 0.05657 0.00433 

  ̂  1.51748 0.07658 0.00688 

 200 â  2.06640 0.08448 0.00798 

  b̂  0.49017 0.00985 0.00080 

  ̂  0.75726 0.04822 0.00344 

  ̂  1.49708 0.06433 0.00521 
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Tables 2, 3 and 4 show that the MSEs of all parameters are decreasing 

when the sample size is increasing. However, the MSEs of all parameters          

are very large, when considering Bayesian estimation based on the non-

informative prior (C3). That is, in general, the Bayesian estimation based on 

the informative priors provides smaller MSE than the Bayesian estimation 

based on the non-informative prior. For all sample sizes, the Bayesian 

estimation according to the standard exponential prior distributions (C1) 

provides the best estimate for the parameters, since their corresponding 

MSEs are small. Bayesian estimation gives better estimation than maximum 

likelihood estimation. 

Table 4. Posterior summaries for the BEIR distribution for C3 
Prior n Parameters Mean Biases MSE 

C3 20 â  2.04921 0.09793 0.00968 

  b̂  0.47182 0.02821 0.00256 

  ̂  0.77023 0.06107 0.00508 

  ̂  1.55687 0.08920 0.00855 

 50 â  2.06550 0.09298 0.00912 

  b̂  0.47941 0.02066 0.00190 

  ̂  0.77502 0.05879 0.00458 

  ̂  1.54694 0.08410 0.00774 

 100 â  2.04768 0.08951 0.00859 

  b̂  0.47846 0.01357 0.00189 

  ̂  0.76399 0.05085 0.00409 

  ̂  1.51308 0.07509 0.00671 

 200 â  2.07396 0.08063 0.00858 

  b̂  0.49484 0.00517 0.00037 

  ̂  0.76412 0.04524 0.00294 

  ̂  1.49711 0.07263 0.00631 

5. Data Analysis 

This section contains an application of the BEIRD for a real data. The 

data set consists of 74 observations and it represents the strength measured 
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in GPA for single carbon fibers and impregnated 1000-carbon fiber tows. 

Single fibers were tested under tension at gauge lengths of 20mm (Kundu 

and Raqab [11]). 

The data set is: 

1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958 1.966 1.997 

2.006 2.021 2.027 2.055 2.063 2.098 2.140 2.179 2.224 2.240 2.253 2.270 

2.272 2.274 2.301 2.301 2.359 2.382 2.382 2.426 2.434 2.435 2.478 2.490 

2.511 2.514 2.535 2.554 2.566 2.570 2.586 2.629 2.633 2.642 2.648 2.684 

2.697 2.726 2.770 2.773 2.800 2.809 2.818 2.821 2.848 2.880 2.809 2.818 

2.821 2.848 2.880 2.954 3.012 3.067 3.084 3.090 3.096 3.128 3.233 3.433 

3.585 3.585. 

The required numerical evaluations are implemented using Mathematica 

package software. We use the above real data to compare the fits of the 

proposed model, BEIR and those of other sub-models, i.e., exponentiated 

inverse Rayleigh distribution (EIR), transmuted inverse Rayleigh (TIR), odd 

Lindley Rayleigh (OLR), Rayleigh (R), inverse Rayleigh (IR) and area 

biased Rayleigh (ABR). Plots of the estimated density and expected value 

for data set are given in Figure 1 and the empirical  xF  and  xS  plots for 

data set are given in Figure 2. 

   

Figure 1. The PDF and expected value plots for data set. 
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Figure 2. The empirical  xS  and  xF  plots for data set. 

 Table 5 gives the MLEs and standard error of the model parameters for 

BEIR, EIR, TIR, OLR, R, IR, and ABR. Table 6 lists the value of “Anderson 

Darling test (AD), Watson test (W), Kolmogorov Smirnov statistic (KM), 

the value of the Akaike information criterion (AIC), Bayesian information 

criterion (BIC), Hannan-Quinn information criterion (HQIC) and p-value” 

for BEIR, EIR, TIR, OLR, R, IR, and ABR. 

Note that  ,ln22 LkAIC      ,ˆln2ln LnkBIC   and HQIC  

  ,lnln22 max nkL   where k is the number of parameters, L is likelihood 

function, n is the number of data points, L̂  is the maximized value of the 

likelihood function and maxL  is the log-likelihood. 

From Table 6, the results indicate that the BEIRD has the smaller value 

of AD, W, KS, AIC, BIC and HQIC. Also, BEIRD has the bigger value of p-

value when compared to that of the EIR, TIR, OLR, R, IR and ABR models. 

So, the model of BEIR provides a better fit to these data and seems to be a 

very competitive model for these data. 
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Table 5. Estimated parameters with their standard errors of the BEIR model 

and other fitted models 
Model MLE Standard error 

 ̂  ̂  â  b̂    a b 

BEIR 10.4517 6.95714 0.244047 11.2401 78.7445 1.22166 0.107638 82.1721 

EIR 11.0291 4.0508 - - 3.02972 0.221016 - - 

TIR 1 7.85254 - - 0.665047 1.21713 - - 

OLR 0.340327 0.506879 - - 0.0814502 0.0520208 - - 

R - 1.78487 - - - 0.103743 - - 

IR - 5.3379 - - - 0.620518 - - 

ABR - 1.36209 - - - 0.0518716 - - 

Table 6. Goodness of fit measures of the BEIR model and other competing 

models 

Model AD W KS AIC BIC HQIC p-value 

BEIR 0.365892 0.0488351 0.0595218 111.667 120.883 115.344 0.955728 

EIR 0.924721 0.140274 0.0865446 115.149 119.757 116.988 0.636459 

TIR 6.20894 1.08041 0.25045 155.29 159.898 157.128 0.000185916 

OLR 89.2295 16.4 0.926201 116.217 120.826 120.826 0 

R 13.3126 2.65435 0.339298 190.302 192.606 191.221 81096907.7   

IR 12.3913 2.49416 0.366424 193.091 195.395 194.01 91068758.4   

ABR 6.30935 1.12823 0.004295 144.833 147.137 145.753 0.001168 

6. Conclusion 

This article introduces a four parameters model, called beta 

exponentiated inverse Rayleigh model. The proposed distribution includes  

special sub-models. Some mathematical properties are derived. Parameters 

of BEIRD are estimated by using the maximum likelihood estimation 

method and Bayesian estimation method. The Bayesian estimation of the 

parameters under squared error loss function was considered for the BEIR 

 ,,, ba  distribution. The joint posterior distribution was introduced by 

using both informative and non-informative prior distributions. Based on 

Monte Carlo simulation study, it has been observed that the Bayesian 
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estimates of  under the assumption of three cases are the same. The 

proposed distribution is applied to a real data set. The BEIRD provides           

a better fit than several other sub-models. It has been observed that the 

Bayesian estimates of  under the assumption of the standard exponential 

prior distributions have the smallest MSE, when compared to the other cases. 

Also, Bayesian estimation based on informative prior distributions is found 

better than Bayesian estimation based on non-informative prior distributions.  
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