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Abstract

In this paper, a new distribution is proposed called beta exponentiated
inverse Rayleigh (BEIR). Some of its statistical properties such as
quantile function, order statistics, moments, inverse moments, moment
generating function and Renyi entropy are derived and discussed.
Maximum likelihood and Bayesian methods are used to estimate the
model parameters. Monte-Carlo simulation study is carried out to
examine the bias and mean sguare error of maximum likelihood and
Bayesian estimators. Finally, rea data sets are used to illustrate the
importance of the new distribution.
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1. Introduction

Inverse Rayleigh distribution was introduced by Trayer [22] to model
reliability and survival data sets. Voda [24] discussed inverse Rayleigh (IR)
distribution, its properties and ML estimator of the parameter. Gharraph [7]
provided a closed-form expression for the mean, harmonic mean, geometric
mean, mode, and the median of this distribution. The beta inverse Rayleigh
distribution (BIR) is a special case of the beta Frechet (BF) distribution,
which was introduced by Nadarajah and Gupta [15]. Hassan and Parviz [25]
estimated the parameters of the generalized exponential distribution using
grouped data using classical and Bayesian estimation methods. Leao et al.
[13] studied beta inverse Rayleigh distribution and Ahmad and Ahmed [1]
introduced a generalization of the inverse Rayleigh distribution. Modified
inverse Rayleigh distribution has been studied by Khan [20]. Rehman and
Sajjad [19] studied exponentiated inverse Rayleigh distribution, and Khan
and King [10] studied transmuted modified inverse Rayleigh distribution. Ul
Haq [23] introduced transmuted exponentiated inverse Rayleigh distribution.
Some new distributions have been introduced using a class of beta
generalized distributions. For example, beta normal distribution (BN) was
introduced by Eugene et al. [3]. General expressions for the moments of the
BN distribution were derived by Gupta and Nadarajah [5]. Beta Weibull
distribution was introduced by Famoye et al. [4]. Beta exponential
distribution and its various properties were discussed by Nadarajah and Kotz
[16]. Beta generalized exponential distribution was proposed by Hassan
and Parviz [25]. Beta Weibull-geometric distribution was introduced by
Bidram et al. [2]. Beta Kumaraswamy distribution was introduced by
Handique et al. [8]. Beta exponential Pareto distribution, its various
properties and estimation of the parameters were derived by Rashwan and
Kamel [18].

The cumulative distribution function (cdf) of the exponentiated inverse
Rayleigh (EIR) distribution is defined by
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o
G(X)zl—l—e(") , x>0,6>0,a>0. (1)

The EIR density function can be written as
2 a-1

et [0
g(x):“_?e ll-e M , x>0,6>0,a>0, (2)
x

where o is the scale parameter and o is the shape parameter.

Eugene et al. [3] defined a class of beta generalized distributions from an

arbitrary baseline, G(x), by
(N A b-1
F(x) = WIO w T (1=w) dw, x>0, 3)

where @ >0 and b > 0 are two additional shape parameters whose role

is to introduce skewness and to vary tail weight and B(a, b) =
| — . . .
J.o wi I (1= w)’law is the beta function. The cdf G(x) could be quite

arbitrary and F'is named to be the beta G distribution.

The probability density function corresponding to equation (3) can be

written in the following form:
1) = gy ()1 - G g, @

G(x)

where g(x) = dT is the pdf of the parent distribution.

In this article, we proposed a new distribution called the beta
exponentiated inverse Rayleigh distribution (BEIRD) that includes
inverse Rayleigh, beta inverse Rayleigh and exponentiated inverse Rayleigh

distributions.
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This paper is organized as follows: BEIRD is presented in Section 2.
In Section 3, some statistical properties of the BEIR distribution are derived.
In Section 4, parameters are estimated using the maximum likelihood and
Bayesian methods. Moreover, a simulation study is performed to measure
the efficiency of the two methods. In Section 5, an application to real data
shows that the BEIR model fits better than six other lifetime models. Finally,
the paper is concluded in Section 6.

2. The Beta Exponentiated Inverse Rayleigh Distribution

In this section, the beta exponentiated inverse Rayleigh distribution will
be defined by taking
2 o

C

F(x)= w1 = w)¥law, a, b, 0, 6 >0, x > 0, (5)

1 1-| 1-e
B(a, b) IO

and the corresponding pdf for F(x) takes the form:

f(x)= —2251 Z,Xb_; e_(;j 1-e (’Cj

a-1

2 ab-1 a

p 2
1— 1—5@ (6

Note that the BEIRD involves some well-known distributions as special

cases:

- when a = b =1, the BEIR distribution in equation (6) reduces to the

EIR distribution with parameters o and o,

- when a=b=0o =1, the BEIR distribution becomes the inverse

Rayleigh distribution with parameter o,

- when a =1, the BEIR distribution will be beta inverse Rayleigh

distribution with parameters G, a and b.

Here, simple expansions for the cdf and pdf of the BEIRD will be
derived. It depends on whether the parameter b or a is a real non-integer or
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an integer. We use the following generalized binomial expansion:

(1-2z)! =Zj’_o%zh 1Z|<1. 7)

If b is a real non-integer and T'(-) is the gamma function, applying

equation (7) in equation (5), the cdf of BEIRD can be written as

()
I-{1-e \*

(02

_ 1 (2)"T(d) atm—
FO)= 5055 27—yt o Wy
,a (a+m)
__ 1y (-1)"T() 13
~ Bla, b)zmzol"(b—m)m!(a+m) I=|1-e - (®)

By using equation (7) in equation (6), if a is a real non-integer, then the
pdf of BEIRD can be written as:

_a Ny v ()Y (@)T(b + i) gr(x; o) + 1))
S(x) = B(a, b) Zi:O Zj:O i j!'T(a —i)T(au(b + gﬂ—e G i 1)

where gzr(x; o(j +1)) is the pdf of inverse Rayleigh distribution with

parameter o(j + 1).

Let

o (-1 T (a)(alb + i)
Y Bla, b)i'j'T(a —)T(a(b +i)— j)(j+ 1)

Then

F)= 20 2 g ol + 1) ©)
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For real integers a and b, the cdf and pdf of BEIRD are expressed as

follows:

(a+m)

(o
X

b-1 ()" T(b) 1—l1—¢ (10)

1
F(x)= mzmzo (b —m)m!(a+m)

and

o a-I~oa(b+i)-1 (1Y I T(a)T(a(b + i) gz (x; o(j + 1))
10 B m 2o 20 AT DTG+ G+

(11)
If o is an integer, then the sum in equation (10) simply stops at (b — 1),

and in equation (11) stops at (a(b +i)—1) and (a — 1), respectively.

The reliability function S(x), hazard rate function %(x), reversed hazard
rate function r(x), and the cumulative hazard function H(x) of BEIRD are,

respectively, given by:

— (a+m)
L o (-1)"T(b) R B
S(x) =1 Ba, b) Zm:() (b —m)m!(a+m) o ’
. OIS 2y
2a02x_3e_(;) 1- e_(;) I=|1- e_(;)
h(x) _ (a+m)’

2o

Bla,b)-Y " CUTLR) ]y e_(;

=0L(b —m)m!(a + m)
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2 ab-1

2)
2062x 3| 1—e \¥

r(x) - 1+m

s e | Y

m=0T'(b — m)m!(a + m)

and

— (a+m)

Loy (') iE
H(x) == 1= B(a, b) Zm:O L(b—m)m!(a+m) I=l-e ( )

If a random variable x has BEIRD with parameters a, b, a and o, then

we write x ~ BEIR(a, b, o, ©).
3. Statistical Properties

In this section, we introduced some of statistical properties of the
BEIRD, specifically, quantile regression, order statistics, moments, inverse

moments, moment generating function and Renyi entropy.
3.1. Quantile function

The quantile function of a random variable x distributed according to

BEIR can be obtained by inverting equation (8) as follows:

-G
Inf1- [1 _ (%jl/wmj/“

_ _ 1 0 (=1)"T(b)
where u = F(x) and y = Bla. ) Zm:O TG —m)ml(a +m)’

Ou) =
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By using Q(u), we can obtain the first quartile Q;, the median Q,, and
the third quartile Q5 of the BEIR distribution by replacing u# with values
0.25, 0.50 and 0.75, respectively.

One of the original skewness measures indicated in Bowley’s skewness
(sk), (Kenny and Keeping [12]), is defined as

o = 00.75) - 20(0.50) + 0(0.25)
0(0.75) — 0(0.25) :

and the Moor’s kurtosis (ku), (Moors [14]), which is based on octiles can be

defined as
o d5)95)d5) ol

os)-di)

where QO(-) represents the quantile function. The measures sk and ku are

less sensitive to outlier values and they exist even for distributions without

moments.
3.2. Order statistics

In this subsection, we consider order statistics which plays an important
role in many applications such as quality control and reliability. The density

function of the ith order statistics X,., say f;.,(x) fori=12,...,n ina

random sample of size n from the BEIRD is given by:
. = & i—1 — n—i
Sim(x) = B, n—i+1) [F()I 1= F)]"™,

and applying the generalizing binomial series, we get

fin) = by S (et
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Substituting equation (8) in the above equation, we obtain

Sfin(x) = 0 {:(xz - 1) Z( )k( iJ[Bl("‘gb)bJHkq

u (a+m) i+k-1
G 2

0 (_l)m Xi
x Zm:OF(b—m)m!(a+m) I=|1-e

and

Jin@) = 3 f;(_sz)Z( ) ( j[B(ché )Tk—l

r m i+k-1
2 o
e [
X Zmzol“(b—m)m!(aer){1 I-e
r e a(i+k-1)
_| S
x[1-[1—e \¥ (12)

n
Use the expansion [22_0 Z,X m} = z::() CipnX ™ as in Gradshteyn
. « -1
and Ryzhik [6], where “C,, , = (mz9)" D" (nl =m+1)Z,C,,_; , for
m =1, 2, ...” is the pdf of the ith order statistics.

By substituting in equation (12) using f(x) in equation (9), the ith order

statistics for a real non-integer b > 0 is given by:

Sfin(x)= f(x; a(i + k) + m, b, a, o)
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(—1)’{”]; ijr(b)”k_lB(a(i +k)+m, b)C,(i)H o

DIEP I B, n—i+1)(B(a, b)) *
x f(x; ai + k) + m, b, a, o),
where
-1
e[
C(l) _ F(b — 0) (a + 0)0'
m, i+k—-1 —

m R
Z,zl [1G + k1) —m +1] a +(l)11)"(b —7y Cm-tivkt

Car(b)~om (<) (G + k) = m)
om Z[:l l!(a+l)+r(b—1) Cm—l,i+k—1a

and f(x;a(i +k)+m, b, a,c) is the pdf of BEIR with parameters

a(i + k) +m, b, o and o.
For integer b > 0, the ith order statistics is given by:

Sfiin(x)= f(x; a(i + k) + m, b, a, ©)

" 0 m e

* 2o Lo B(i, n—i+1)(B(a, b)) **

o m_l[(((l_j—)?))j_l(b : 1}

myitk-1~ 1)
m . _
E G+ ke =1)—m+ l]—(a ) Con—1,i+k-1

where

_ m (=Y. (1 + k) - m)(b l_ 1]

T m L= (a+1) Cn—t,ivk-1>
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and f(x;a(i +k)+m, b, a,c) is the pdf of BEIR with parameters
a(i + k) +m, b, o and o.

3.3. Moments

The rth non-central moment of a random variable x distributed according
to BEIRD is given by:

E(x") = J':) x" f(x)dx = I: xr[Zio Z?:O w;gr(x; o/ + 1))} dx,

S0,

2 j+1

r *® *® “ 202 _(%)
E(x") = Zi:O ijo Wion x'=-le dx
x
2
0 0 © _(j+1)(g)
= Zi:O ijo Wij.[() 26%x" e 7 dx. (13)

Let

2
t=(j+1)(%) , when x =0, =00, and x =00, t =0, 0 < ¢ < o0,

x=o(j+ )22 gy = S+ D232y,
Using the above transformations in equation (13), we get

EG) = (D 2wy x [ 20?lol+ DYy

et _70 (j+ D232,

and then

o0 o0 a0 . L_l __r _
1= Tl e
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SO,

r o0 o0 .o Y lpw (1—%)—1 i
E(x")= Zi:O ijo w;c' (j +1)2 -[0 t e 'dt.

Hence, if @ > 0, then E(x") of BEIR distribution is

.
N T 0 © s 5—1
E(x')=0 F(l 2)21-_02,-_0””0(1 +12 , r<l. (14)

The above equation is valid only for » < 1. So, the only mean of the
BEIR distribution is obtained by putting » =1 in equation (14) as follows:
-1

E(x) = anlo_io Zj:o wi(J + 2.

Equation (13) can be used to obtain moments and inverse moments when
r = —r. It is observed that the higher moments of order 2, 3 and 4 for BEIR

distribution do not exist but the inverse moment of any order exists.
3.4. Inverse moments

The rth inverse moment of the BEIR distribution is obtained by:

Iy o © © '
E(;j - JO x rzi:()zj:o WingR(X; o(j +1))dx,

so,

o 2 7j+1
1Y _ N | ® _20° —(;)
E(?j _Zi:OZj:OWijJO * 2 ¢ dx

G+ = ’
_N\* % © 2 —r=3 T (?)
= Zi:O ijo Wij-“o 20°x e dx.
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Let

2
t:(]-l—l)(%j ,Whenx:o’[:oo, andx:oo,t=0,0<t<oo,

X = G(] + 1)1/21‘_1/2, dx = __26(] + 1)1/2t_3/2dt.

Using the above transformations, we get:

1Y 0 0
E(;j - (_1)2,-:0 Zj:() Wij
X J‘(;)o 262 [G(j n 1)1/2t—1/2 ]—r—3e—t _TG(] " l)l/zt_3/2dt,

and then

1Y 3 0 0 o 2t
E(;j _Zizozj':owij'jo o '(j+1) t' e dt,

S0,
o] — w ey (1+%)—1 »
(;j S e G [
1 r
Hence, if a > 0, then E(—j of BEIRD is
x

1Y _ r 0 0 . —r=2
E(;j -° F(l - Ejzi:O ijo wy (J+1)7

The four inverse moments are obtained by putting » =1, 2, 3, 4 in the above

equation:
1y_ 1 © w . .
E(xj B 20&21':02]:0 le(f + 1) >

1) 1 xo° o= o
E(x_ZJ - ?Zizo ijo wy (J+1)77,



98 Nasr I. Rashwan et al.

I RP=R ) YRR
) F T T

3.5. Moment generating function

The moment generating function (mgf) of X of the BEIRD, M ,(¢), can

be obtained as
‘ b
M (1) = B = [ e ().
by using Taylor’s series expansion, we get
m 0= [1 R T jf(x)dx

so,

w0 =[5 pax

and then

M (t) = E(x" )Z (15)

Or'

Hence, the moment generating function of BEIR distribution is obtained

by using equation (14) in (15) as:

A

’
-1
o r 0 0 w t Wij (] + 1)
M()=o F(l E)Zi_ozj_o Zr_o—r! , r<l.

In the same way, the factorial moment generating function of the BEIR

distribution becomes:
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>-1
Mx(lnt)zE(exlnt)zcr ( __)Zl OZ] Ozoo (Inz)"w y(]+1) ’

r<l,

and the characteristic function of BEIR distribution is given by:

L
R () 3 YD I

where i = /-1 is the unit imaginary number.

3.6. Renyi entropy

The entropy of random variable x with density function f(x) is a

measure of variation of the uncertainty, as in Song [21], Renyi entropy is

given by:
Lir(q) = 7= n(Lx()).

where 1,(q) = qu(x)dx, g>0,q=#1.

For a random variable x distributed as BEIR and by using equation (9),

we have:

5+

1,(q) = (Zl OZJ 0 ,-jj Iw % e_(%) dx,

and then

G 2
I(q) = (Zio Zj;o Wijj" (2c)qj(:0 x—Sqe‘q(m)(;) "
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Let

2
t=q(l+j)(%) ,when x=0,7 =00, and x =00, ¢t =0, 0 < ¢ < o0,

x = o(g(+ )2V, ax = 2 g0+ )P an

By using the above transformation, we have:

1-3q ,, 39-3

© 0 q _ . —L —Y—+1-1 _
o) = (20, 2w ) 27 MGGy 2 [T e

and then

1-3¢q

I(q) = (ZZO Zj):o Wijjqﬂ_lcl_zq(Q(j + 1))TF(%)

Hence, the Renyi entropy becomes:

I.r(q) = ﬁln(zﬁo ijo Wijj —-In2+Ino
1-3g
’ (2 —-2q

4. Estimation

jln(q( j+1)+1n F(MT_IJ

In this section, the parameters of the proposed BEIRD will be estimated
using the maximum likelihood estimation method and Bayesian estimation

method as follows:
4.1. Maximum likelihood estimation and its simulation

The maximum likelihood estimation method of the unknown vector of
parameters ¢, where ¢ = (a, b, a, o), will be used to estimate the unknown
parameters of the BEIRD. Let xi, x5, ..., X, be an independent random

sample of size n from the BEIRD with parameters «a, b, a and o. Then the
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likelihood function, L, of BEIRD is given by:

n n

2
n 2 n | (e
L($) = {H f(x;a,b,0, a, x)] = [%} e (xi)
i=1 i

=1 i=l1
2 ab-1

2
1. l—e_(x_i) TT.1- l—e_(x_ij . (16)

and the logarithm likelihood function InL for the vector of parameters

¢ = (a, b, a, G)T can be expressed as

L($) = nln2+ nlnc® + nlno - nln B(a, b)—32?_llnx,- —czz?_lxi_z

2
|5
+(ab—1)2?:11n l-e (x"j

G 2
+@-DY" mn1- l—e_(x_ij . (17)

The score vector is:

T
Do) - [2L@) L) aL@) L)
6a > 0ob ’ Oa ' oo |’
where the components corresponding to the parameters in ¢ are calculated by
differentiating equation (17) as follows:

o

2
g—z = n(y(a, b) — y(a)) + Z; Inj1-]1- e_(x_") , (18)
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2
o = n(w(a, b) = y(b) + oY Inf1- G )

2
(e}
OL n n _(x_lj
%—a+bzi:11n 1—e

CE)) : (20)

+ 200a — 1)22’:1 —, Q1)

where () is the digamma function which is the derivative of InT(-),
where T'(-) is the gamma function. We can obtain the estimates of the

unknown parameters by setting the score vector to zero and solving them

using numerical iteration such as Newton-Raphson algorithm.
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Now, we study the performance of the MLE with respect to sample size
n using simulation. To conduct the simulation study, we follow the following
steps:

We generate 1000 samples of size n = 20, 50, 100, 200 from BEIRD
(2, 0.5, 0.75, 1.5) and compute the MLEs for the 1000 samples, and compute

the biases and mean-squared errors (MSEs). The results are listed in Table 1,

where

1000 A

1 1000 2 1 ~
MSE = 1500 Zizl (0, =9)",  Bias = 1505 Zizl (0~ ).

Table 1. Average of “MLE summaries, bias and MSE”

n Parameters ~ Average “MLE” Bias MSE
20 a 2.07980 0.13982 0.08317
b 0.48813 0.02187 0.03695
o 0.76427 0.73106 0.05837
G 1.56790 0.15036 0.09734
50 a 2.06627 0.09247 0.08094
b 0.48299 0.01501 0.02913
o 0.77527 0.65116 0.04637
G 1.54977 0.11943 0.08641
100 a 2.05368 0.08477 0.07365
b 0.48420 0.01080 0.02081
o 0.77760 0.40657 0.03971
G 1.51748 0.09067 0.07006
200 a 2.06638 0.07402 0.06824
b 0.49017 0.00983 0.00959
o 0.75726 0.14822 0.02864

c 1.49795 0.05068 0.07332
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From Table 1, it is noted that the magnitude of bias and MSEs always
decrease as n grows. Thus, the MLE technique performed quite well for

estimating the parameters.
4.2. Bayesian estimation and its simulation

In this subsection, Bayesian estimation of the unknown vector of
parameters ¢ of the BEIR is considered under the squared error loss
function. Assuming that the unknown parameters are independent, the
Bayesian estimation for ¢ is obtained assuming the standard exponential
distribution as an informative prior for each parameter, in Case 1. While
Case 2 assumes a gamma prior for each one of the parameters, Case 3 deals

with the non-informative prior distribution for the parameters.

Case 1 (called C1). Suppose that the prior distribution of each element

of the vector of parameters ¢ = (a, b, a, ) is a standard exponential

distribution. Then the joint prior density function of parameters ¢ is given
by:

() = e % Pe %O, (22)
where a, b, o and o are positive.

The joint posterior density function of ¢ can be obtained from equations
(16) and (22) as follows:

m(¢lx) o« L(¢)m;(9),

so,

2
1 (§]x) o e e Pe % 200 an T e_(x%)
! B(a, b) i=1"" i=1

2 ab-1 a-l1

2
JT1- e_(x_i) IT.11-]1- e_(x_i) @

i=1

(02
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Case 2 (called C2). Suppose that the prior distribution of each element
of the vector of parameters ¢ = (a, b, o, 5) is a gamma (8i, 1) distribution;
i=1,2,3,4. Then the joint prior density function of the vector of

parameters ¢ is given by

ol osii—a 1 81 b 1 83-1 —a 1 841 -6
nz(d))—rslcz e r62b e 1_,63()( e 1_,840 e’ (29

The joint posterior density function of ¢ can be obtained from equations
(16) and (24) as follows:

2 (¢1x) oc L(9)m2(9),

SO,

Lo sita Loys1 b L 831 -
75 (] x) ¢ s, a’l"e s, b2 e s, a® e

2 n
1 5,-1 —c| 200 noo_3
o, 0 ¢ (B(a, b)J [1.~
2 ab-1

« H; e_(’%)sz_l 1— e_(%)

2
T - l—e_(x_") . 25)

Case 3 (called C3). Assume a non-informative distribution for each
parameter. Then the joint prior density function of the vector of the
parameters ¢ is given by:

1

3 (26)

N
Q|—
al—

m3(9) oc
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The joint posterior density function of ¢ can be obtained from equations
(16) and (26) as follows:

m3(¢x) o< L(9)m3(9),

so,

2 \" o)
1111 200 no 37N _(x_l)
m3($]x) o= abooc (B(a, b)J IIizlxi i=1 €

2 ab-1 o a-1

2
[T l—e_(x_ij TT.|t- 1—e_(x_ij @7

i=1 i=1

The conditional posterior distribution of a, b, @ and © cannot be

reduced analytically to well-known distributions, and therefore, it is not
possible to sample directly by standard methods. We use the Markov Chain
Monte Carlo (MCMC) method named as the Metropolis Hastings sampling.

For this algorithm, we propose the following steps:

Step 1. Choose the MLEs a, 5, & and 6, as the starting values
(a(l), b(o), oc(o), 0(0)) of a, b, o and .

Step 2. Set i =1.

Step 3. Generate a(i), b(i), oc(i), cs(i).

Step 4. Evaluate the acceptance probabilities 1.

Step 5. If n, < d)(i), accept the proposal points.

Step 6. If ny > ¢(i), the proposal points are rejected and set i =i + 1.

Step 7. Repeat Steps 3-5, forall i =1, 2, ..., 1000 (N times).
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Step 8. Obtain the Bayes estimates of a, b, o and o with respect to the

square error loss function as

1 N
E(a |x) - N —m Zi=m+1 i
1 N
E(b|x) " N-m Zi:mﬂbi’
1 N
E(afx) = N —m Zi:mﬂai’

1 N
E(o|x) = N-m Zi:mﬂci’

i
where m is the burn-in period, mng = min[l, W], and ¢ =
(¢ | x)

(a, b, a, ©).

To compute the posterior summaries, the computations regarding the
comparisons between the considered three cases (Cl1, C2 and C3) are
performed assuming different sample sizes. For a given vector of parameters
¢ = (a, b, a, ), we generated 10,000 MCMC samples and used 2002 as
the burn-in period to have stable posterior summaries. The resulting study is
tabulated in Tables 2, 3 and 4.

Table 2. Posterior summaries for the BEIR distribution for C1

Prior n Parameters Mean Biases MSE
Cl 20 a 2.06271 0.09749 0.00971
b 0.48159 0.01845 0.00169
a 0.77721 0.06084 0.00475
G 1.55953 0.08610 0.00814
50 a 2.07079 0.09507 0.00936
b 0.48509 0.01494 0.00133
a 0.77311 0.05786 0.00465
G 1.54868 0.08079 0.00760
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100 a 2.06297 0.09183 0.00885
b 0.48448 0.01354 0.00129
a 0.75947 0.05146 0.00379
G 1.51633 0.07503 0.00680
200 a 2.04944 0.08298 0.00772
b 0.48664 0.01038 0.00109
a 0.75308 0.04406 0.00294
G 1.48404 0.07667 0.00674

A program code has been designed using R statistical package to
solve the integral of equations (23), (25) and (27), to obtain the estimates

&) = (a, b, &, 6) of ¢ = (a, b, a, o) in all three previous cases. Tables 2, 3

and 4 show the estimate of mean, bias, and mean squared error (MSE) for
the three considered cases (C1, C2 and C3).

Table 3. Posterior summaries for the BEIR distribution for C2

Prior n Parameters Mean Biases MSE

C2 20 a 2.07979 0.09801 0.00972
b 0.48811 0.01191 0.00268

a 0.77427 0.06105 0.00498

G 1.56788 0.08828 0.00855

50 a 2.06626 0.09245 0.00907

b 0.48299 0.01704 0.00151

a 0.76527 0.06015 0.00483

G 1.54976 0.08200 0.00764

100 a 2.05368 0.09079 0.00831

b 0.48421 0.01583 0.00140

a 0.75761 0.05657 0.00433

G 1.51748 0.07658 0.00688

200 a 2.06640 0.08448 0.00798

b 0.49017 0.00985 0.00080

a 0.75726 0.04822 0.00344

1.49708 0.06433 0.00521

(e}
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Tables 2, 3 and 4 show that the MSEs of all parameters are decreasing
when the sample size is increasing. However, the MSEs of all parameters
are very large, when considering Bayesian estimation based on the non-
informative prior (C3). That is, in general, the Bayesian estimation based on
the informative priors provides smaller MSE than the Bayesian estimation
based on the non-informative prior. For all sample sizes, the Bayesian
estimation according to the standard exponential prior distributions (C1)
provides the best estimate for the parameters, since their corresponding
MSEs are small. Bayesian estimation gives better estimation than maximum

likelihood estimation.

Table 4. Posterior summaries for the BEIR distribution for C3

Prior n Parameters Mean Biases MSE

C3 20 a 2.04921 0.09793 0.00968
b 0.47182 0.02821 0.00256

a 0.77023 0.06107 0.00508

6 1.55687 0.08920 0.00855

50 a 2.06550 0.09298 0.00912

b 0.47941 0.02066 0.00190

a 0.77502 0.05879 0.00458

G 1.54694 0.08410 0.00774

100 a 2.04768 0.08951 0.00859

b 0.47846 0.01357 0.00189

a 0.76399 0.05085 0.00409

6 1.51308 0.07509 0.00671

200 a 2.07396 0.08063 0.00858

b 0.49484 0.00517 0.00037

a 0.76412 0.04524 0.00294

G 1.49711 0.07263 0.00631

5. Data Analysis

This section contains an application of the BEIRD for a real data. The

data set consists of 74 observations and it represents the strength measured
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in GPA for single carbon fibers and impregnated 1000-carbon fiber tows.
Single fibers were tested under tension at gauge lengths of 20mm (Kundu
and Raqab [11]).

The data set is:

1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958 1.966 1.997
2.006 2.021 2.027 2.055 2.063 2.098 2.140 2.179 2.224 2.240 2.253 2.270
2.272 2.274 2.301 2.301 2.359 2.382 2.382 2.426 2.434 2.435 2.478 2.490
2.511 2.514 2.535 2.554 2.566 2.570 2.586 2.629 2.633 2.642 2.648 2.684
2.697 2.726 2.770 2.773 2.800 2.809 2.818 2.821 2.848 2.880 2.809 2.818
2.821 2.848 2.880 2.954 3.012 3.067 3.084 3.090 3.096 3.128 3.233 3.433
3.585 3.585.

The required numerical evaluations are implemented using Mathematica
package software. We use the above real data to compare the fits of the
proposed model, BEIR and those of other sub-models, i.e., exponentiated
inverse Rayleigh distribution (EIR), transmuted inverse Rayleigh (TIR), odd
Lindley Rayleigh (OLR), Rayleigh (R), inverse Rayleigh (IR) and area
biased Rayleigh (ABR). Plots of the estimated density and expected value

for data set are given in Figure 1 and the empirical F(x) and S(x) plots for

data set are given in Figure 2.

r T T T T T ]
10 15 20 25 30 35 40

Figure 1. The PDF and expected value plots for data set.
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Figure 2. The empirical S(x) and F(x) plots for data set.

Table 5 gives the MLEs and standard error of the model parameters for
BEIR, EIR, TIR, OLR, R, IR, and ABR. Table 6 lists the value of “Anderson
Darling test (AD), Watson test (W), Kolmogorov Smirnov statistic (KM),
the value of the Akaike information criterion (AIC), Bayesian information
criterion (BIC), Hannan-Quinn information criterion (HQIC) and p-value”
for BEIR, EIR, TIR, OLR, R, IR, and ABR.

Note that AIC = 2k —21In(L), BIC = klIn(n) - 21In(L), and HQIC =
—2Lax + 2k In(In(n)), where k is the number of parameters, L is likelihood

function, n is the number of data points, L is the maximized value of the

likelihood function and L, is the log-likelihood.

From Table 6, the results indicate that the BEIRD has the smaller value
of AD, W, KS, AIC, BIC and HQIC. Also, BEIRD has the bigger value of p-
value when compared to that of the EIR, TIR, OLR, R, IR and ABR models.
So, the model of BEIR provides a better fit to these data and seems to be a

very competitive model for these data.
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Table 5. Estimated parameters with their standard errors of the BEIR model
and other fitted models
Model MLE Standard error
a G a b o o a b
BEIR 104517 6.95714 0244047 112401 78.7445 122166 0.107638 82.1721
EIR  11.0291  4.0508 - - 3.02972 0221016 - -
TIR 1 7.85254 - - 0.665047  1.21713 - -
OLR  0.340327 0.506879 - - 0.0814502 0.0520208 - -
R - 1.78487 - - - 0.103743 - -
IR - 5.3379 - - - 0.620518 - -
ABR - 1.36209 - - - 0.0518716 - -

Table 6. Goodness of fit measures of the BEIR model and other competing

models

Model AD w KS AIC BIC HQIC p-value
BEIR  0.365892  0.0488351 0.0595218 111.667 120.883  115.344 0.955728
EIR 0924721  0.140274 0.0865446 115149 119.757 116.988 0.636459
TIR 620894  1.08041 025045 15529  159.898 157.128  0.000185916
OLR  89.2295 16.4 0926201 116217 120.826  120.826 0
R 133126 2.65435 0339298 190302 192.606 191221  7.96907 x 1075
IR 123913 249416 0366424  193.091 195395 19401  4.68758x 107
ABR 630935  1.12823  0.004295 144833 147.137 145753 0.001168

6. Conclusion
This article introduces a four parameters model, called beta

exponentiated inverse Rayleigh model. The proposed distribution includes

special sub-models. Some mathematical properties are derived. Parameters

of BEIRD are estimated by using the maximum likelihood estimation

method and Bayesian estimation method. The Bayesian estimation of the

parameters under squared error loss function was considered for the BEIR

(a, b, a, o) distribution. The joint posterior distribution was introduced by

using both informative and non-informative prior distributions. Based on

Monte Carlo simulation study, it has been observed that the Bayesian
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estimates of ¢ under the assumption of three cases are the same. The

proposed distribution is applied to a real data set. The BEIRD provides

a better fit than several other sub-models. It has been observed that the

Bayesian estimates of ¢ under the assumption of the standard exponential

prior distributions have the smallest MSE, when compared to the other cases.

Also, Bayesian estimation based on informative prior distributions is found

better than Bayesian estimation based on non-informative prior distributions.
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